Устройство и работа кшм дизельного двигателя

Принцип работы кривошипно-шатунного механизма

Под давлением газов, которые образуются в цилиндрах двигателя при сгорании топливно-воздушной смеси, поршень совершает поступательное движение по направлению к коленчатому валу.

Важные детали механизма, а именно: поршень, шатун и вал помогают преобразовывать движения поступательного характера в движения вращательного, что в свою очередь запускает вращение колес автомобиля.

«Cshaft». Под лицензией Public domain с сайта Викисклада —

В обратном порядке взаимодействие вала и поршня выглядит следующим образом: вал при вращательном движении через детали механизма – вал, шатун и поршень, преобразовывает энергию в поступательное поршневое движение.

By A. Schierwagen using OpenOffice Draw [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Поршневой палец

Поршневой палец 3 служит для шарнирного соединения поршня с шатуном. Он представляет собой короткую толстостенную трубку, изготовленную из высококачественной стали и обработанную так, что при очень твердой наружной поверхности она имеет сравнительно мягкую, но прочную сердцевину. Наружная поверхность пальца тщательно шлифуется.

Чтобы при работе двигателя палец не мог выдвинуться из поршня и повредить стенки цилиндра, положение пальца фиксируют.

По способу фиксации пальцы разделяются на плавающие и закрепленные в головке шатуна.

Плавающий палец может поворачиваться и в бобышках поршня, и в головке шатуна. Его осевое перемещение ограничивается стопорными кольцами 4, устанавливаемыми в проточках бобышек поршня.

Палец, закрепленный в головке шатуна, может поворачиваться только в бобышках поршня, в которые, чтобы уменьшить трение, запрессовываются бронзовые втулки. Палец затягивается в этом случае в верхней разрезной головке шатуна стяжным болтом. Плавающие пальцы изнашиваются значительно меньше и более равномерно, чем закрепленные.

Признаки наличия неисправностей в работе КШМ

Могут насторожить посторонние стуки в двигателе. Возможно, это связано с детонацией или вам попалось не слишком качественное топливо. Последствия как детонации, так и некачественного топлива могут быть печальными. Звук при детонации более звонкий, а вот глухой звук может свидетельствовать о том, что износились шейки коленвала. Если же он совсем звонкий и происходит не только при резком увеличении оборотов (например, если вы быстро тронулись с места), то вполне возможно, что вкладыши шейки коленвала начинают плавиться. Возможно, причиной масляное голодание, но так или иначе – в сервис.

Также многое может сказать дым из двигателя. Если он сизый, то значит, что в камеру сгорания попадает масло. Возможно, виной тому маслосъёмные колпачки ГРМ, а возможно, проблема в поршневых кольцах. Накопление нагара на поршнях и цилиндрах приводит к увеличению трения и повышенному износу деталей. Если проблема в кольцах, то будет снижена компрессия, хотя понижение компрессии может быть связано и с другими причинами.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала и течение подготовительных тактов, и вывода деталей КШМ из ВМТ и НМТ.

В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.Маховики отливают из чугуна в виде лиски с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Предварительная оценка состояния сопряжения КШМ по давлению масла и стукам

Предварительную оценку состояния сопряжений КШМ можно получить по величине давлении масла в главной магистрали и характеру стуков в определенных зонах двигателя.

Давление масла проверяют устройством КИ-5472 ГОСНИТИ, которое состоит из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера для сглаживания пульсации масла при измерении давления и сменных штуцеров. Чтобы измерить давление в главной магистрали дизеля, устройство подключают к корпусу масляного фильтра, отсоединив трубку штатного манометра.

Назначение, устройство и принцип действия КШМ
Как ухаживать за КШМ?
Неисправности КШМ
Ремонт КШМ
Силы действующие на детали КШМ

Для проверки давления выполните следующие операции:

  • подсоедините к корпусу масляного фильтра КИ-5472
  • запустите и прогрейте до нормального теплового состояния двигатель
  • зафиксируйте давление масла в магистрали при номинальной и минимально устойчивой частоте вращения коленчатого вала на холостом ходу

Стуки в сопряжениях КШМ прослушивают при неработающем двигателе электронным автостетоскопом ТУ 14 МО.082.017, попеременно создавая в надпоршневом пространстве разрежение и давление с помощью компрессорно-вакуумной установки КИ-4912 ГОСНИТИ или КИ-13907 ГОСНИТИ. Прослушивают стуки в сопряжениях бобышки поршня — поршневой палец, поршневой палец — втулка верхней головки шатуна, шейка коленчатого вала — шатунный механизм.

Если давление масла ниже допустимых значений, при наличии стуков в сопряжениях коленчатого вала проверяют зазоры в указанных сопряжениях. При пониженном давлении масла и отсутствии стуков проверяют регулировку сливного клапана смазочной системы. Если это не даст положительных результатов, проверяют подачу масла насосом и состояние редукционного клапана смазочной системы на стенде.

Неисправности, возникающие при работе КШМ и их причины

Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

Основные неисправности и обслуживание КШМ

Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

  • залегание и разрушение колец;
  • прогорание поршня;
  • трещины стенок гильзы цилиндра;
  • изгиб шатуна;
  • разрыв коленчатого вала;
  • «наматывание» подшипников скольжения на шейки.

Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

  1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
  2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
  3. Использовать только качественное топливо.
  4. Проводить согласно регламенту замену воздушных фильтров.

Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

Источник

Выбор размеров и числа цилиндров

Выбор размеров и числа цилиндров производится на основе следующих соображений.

Диапазон возможного изменения диаметра цилиндра можно определить, используя зависимость D = f(nн) для существующих моделей двигателей. Точки на графиках соответствуют реальным двигателям, степень концентрации точек указывает предпочтительность выбора размеров цилиндра при заданной частоте вращения. Верхние границы заштрихованной области относятся к короткоходным (S/D = 0,8…0,9), а нижние — к длинноходным (S/D = 1,1…1,2) двигателям. При известных типах двигателя и частоте вращения можно определить диапазон предпочтительных диаметров цилиндра. Назначив стандартный D (в мм, округленный на 0 или 5 — для дизелей или до ближайшего четного числа — для карбюраторных двигателей), по соответствующему соотношению S/D определяют ход поршня S и ориентировочно среднюю скорость поршня.

Из исходных данных . Принимаем D=140 мм. По соотношению 1,08 определяем ход поршня S (расстояние по оси цилиндра между мёртвыми точками) и ориентировочно среднюю скорость поршня.

Среднюю скорость поршня определяем по формуле:

(1.1)

Следует помнить, что Сn является показателем тепловой напряжённости и динамической нагруженности деталей двигателя и существенное её повышение.

По заданным номинальной мощности , частоте вращения коленчатого вала , оценённым размером цилиндра определяем их число .

Число цилиндров в свою очередь определяется уровнем форсирования двигателя по мощности, т. е. литровой мощностью.

Для определения литровой мощности целесообразно использовать графики Nел=f(D) (рисунок 1.2) . Согласно графику пределы литровой мощности находятся в интервале .

Устанавливаем цилиндровую мощность:

Рабочий объём цилиндра, это объём цилиндра, освобождаемый поршнем при перемещении от в.м.т. к н.м.т.

Значение D и S — принимаем в дм.

Требуемое число цилиндров определяем по формуле:

(1.3)

Полученное значение округляем до ближайшего целого числа, однако желательно исключить значения . Принимаем .

Необходимо уточнить значение литровой мощности по формуле:

(1.4)

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий