Содержание
- 1 Предпусковой топливоподкачивающий насос
- 2 Типы дизельных двигателей
- 3 Самостоятельный ремонт дизельного двигателя
- 4 Конец
- 5 Достоинства и недостатки
- 6 Топливоподкачивающий насос
- 7 Электронный тюнинг двигателя
- 8 Дизельный двигатель
- 9 Как работает турбонаддув
- 10 Устранение неисправностей системы питания дизельного двигателя
- 11 Жесткая работа дизеля
- 12 Рабочий цикл четырехтактного дизеля
Предпусковой топливоподкачивающий насос
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.
Типы дизельных двигателей
По конструкционным особенностям камер сгорания дизели можно разделить на три типа:
- С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
- С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем. Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны – повышают уровень шума при работе двигателя.
- Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.
Самостоятельный ремонт дизельного двигателя
Для того, чтобы выполнить ремонт дизельного двигателя своими руками, нужно обзавестись необходимыми инструментами и приспособлениями:
- динамометрический ключ;
- набор гаечных ключей;
- техническое руководство по эксплуатации и ремонту автомобиля данной марки.
Предварительно сливается масло и все жидкие составляющие движка. Топливная система отсоединяется от других узлов автомобиля. Разборка проводится с максимальной сосредоточенностью, учитывая скрытое расположение некоторых крепежных элементов. Снятие головки, поддона, шатуна производится над смотровой ямой. Только после этих мероприятий появляется доступ к дефектам движка.
При регулярном самостоятельном капитальном ремонте дизельного двигателя эксплуатация машины не вызовет больших проблем, т. к. проведенные операции способствуют повышению качества функционирования автомобиля:
- Увеличение времени безотказной работы движка.
- Гарантия снижения риска поломки двигателя внутреннего сгорания.
- Надежность регулировок топливной системы.
Владельцы автомобилей, проводящие капитальный ремонт двигателя своими силами, знают и соблюдают основные требования, обеспечивающие безопасность при их эксплуатации:
- использование машинного масла, имеющего соответствующую вязкость данной модели;
- регулярная проверка состояния воздушных, топливных, масляных фильтров и обязательная замена на новые образцы при выходе их из строя;
- соблюдение скоростного режима в соответствии с допустимыми нагрузками на дизельные двигатели;
- грамотное регулирование всех систем двигателя внутреннего сгорания.
Чтобы самостоятельно отремонтировать свой дизельный автомобиль, необходимо обладать опытом и быть осведомленным с конструктивными особенностями работы дизелей.
Автовладельцы обязаны относиться к дизельным машинам с бережливостью, соблюдением эксплуатационных правил, не игнорируя плановые аналитические и ремонтные мероприятия.
Конец
Таким образом, после нескольких лет изнурительной борьбы Рудольф Дизель зашел в тупик. Надо было выдавать замуж дочь, но денег на приданое не было. 19 сентября 1913 года он сел на корабль, чтобы поехать в Англию, и исчез. Три дня спустя в Северном море в рыболовные сети попал труп, опознанный как Дизель.
Убийство? Вряд ли — нет мотивов. Самоубийство? Может быть. Причин предостаточно: полный финансовый крах, огромные неоплаченные обязательства. Тем не менее смерть Рудольфа Дизеля остается одной из самых больших загадок современного мира. Раскроет ли ее кто-либо, мы можем только гадать.
Может, вы возьметесь?
Теги: инженер, изобретатель, двигатель, изобретения, Рудольф Дизель, история изобретения, двигатель внутреннего сгорания
Достоинства и недостатки
Преимущества моторов с турбонаддувом, по сравнению с атмосферными двигателями:
- Повышается мощность.
- Увеличивается крутящий момент.
- Меньше расход топлива.
- Снижается металлоемкость агрегата.
- Более тихая работа, т.к. турбокомпрессор является дополнительным глушителем.
Кроме того, появляется возможность оптимизировать и некоторые другие параметры.
Основным недостатком силового агрегата с турбонаддувом является т.н. «турбояма» (turbolag). Обусловлен он инертностью системы. Если водитель резко нажимает на газовую педаль, то должно пройти некоторое время до того, как нагнетающий компрессор выйдет на необходимую мощность. Происходит так потому, что на небольших оборотах турбина, а с ней и компрессор, вращаются относительно медленно. Поэтому давление в камере сгорания – минимальное. Для борьбы с этим явлением ставят два клапана: перепускной из коллектора в компрессор и для отработанных газов.
Основными способами преодоления турбоямы являются:
- VNT-турбина (т.е., с изменяемой геометрией). Поток выхлопных газов оптимизируется изменением площади впускного отверстия, за счет угла наклона лопаток, для регулировки силы потока выхлопных газов (Volkswagen, Opel).
- Установка двух турбокомпрессоров (bi-turbo), работающих параллельно. Обычно используется на V-образных моторах большой мощности (по одному на каждый ряд цилиндров). Эффект получается за счет того, что две небольшие турбинки менее инертны, чем одна крупная. Может быть и последовательное включение. В этом случае, различные крыльчатки работают на разных оборотах. Иногда встречается triple-turbo (BMW), и даже quad-turbo (Bugatti).
- Комбинированный наддув (twincharger). На один и тот же мотор ставится и механический нагнетатель, который работает на низких оборотах, и турбо от выхлопных газов.
В последнем случае, в качестве примера, можно привести патентованную технологию TCI (Volkswagen). В зависимости от нагрузки, различают следующие режимы. До 1000 об/мин – атмосферный, 1000 – 2400 об/мин – работает только механический нагнетатель, 2400 – 3500 – нагнетатель и турбокомпрессор включаются совместно, более 3500 об/мин – применяется только турбокомпрессор.
Еще одним недостатком можно назвать «турбоподхват»: после преодоления турбоямы, в системе наддува подскакивает давление. Также надо сказать, что подобные силовые агрегаты дороже атмосферных. А еще — им требуется специальное моторное масло.
Топливоподкачивающий насос
Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:
- шестеренными
- плунжерными (поршневыми)
- коловратными (пластинчатого типа)
Как правило, применяются плунжерные и коловратное насосы.
Плунжерный топливоподкачивающий насос
Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.
При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.
Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.
Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.
Коловратный топливоподкачивающий насос
В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.
Электронный тюнинг двигателя
Современные дизельные двигатели все чаще оснащаются электроникой. Датчики, которые следят за нагрузкой, контролируют количество подаваемого топлива и состав топливного заряда, подают сигналы на центральный блок управления, который подбирает наиболее эффективный и экономичный режим работы. При аккуратном влиянии на эту систему с помощью дополнительного оборудования можно повышать мощность мотора в определенных пределах – это называется чип-тюнинг. Сразу нужно отметить, что чип-тюнинг не всесилен, он может улучшить работу двигателя в пределах заложенного запаса прочности и частенько приводит к преждевременному износу систем.
Для повышения мощности дизельного двигателя могут использоваться специальные модули или блоки:
— блок, изменяющий импульсы управления форсунками;
— блок замещения режимов топливного насоса высокого давления (ТНВД);
— блок, изменяющий показания датчика давления топливного аккумулятора;
— модуль оптимизации режимов.
Первый вариант – наиболее известный среди любителей автотюнинга. Принцип работы такого блока заключается в том, что он блокирует кратковременные импульсы предварительного и последующего открытия иглы форсунки, что снижает расход топлива. Блок можно установить практически на любой модели, но его работа снижает ресурс мотора и сказывается на качестве сгорания топливного заряда.
Второй вариант можно использовать только на определенных моделях двигателей. Принцип действия этого блока заключается в том, что он подает сигнал с заниженными показателями давления в системе, что приводить к его повышению. В этом случае «страдает» ТНВД и форсунки, но мощность двигателя действительно увеличивается, а расход топлива уменьшается.
Третий вариант предусматривает подключение блока, который подает на ЭБУ сигнал о допустимо пониженном значении давления в топливном аккумуляторе. В результате давление автоматически повышается и по-новому определяется время и интенсивность впрыска топлива. При этом повышается мощность и экономится топливо, но снижается ресурс ТНВД и сажевого фильтра, на стенках цилиндра образуется нагар, двигатель начинает «дымиться».
Наиболее безопасным и эффективным является четвертый вариант. Модуль, подключаемый к системе питания, не подменяет нужными цифрами истинные значения рабочих параметров, а посылает сигнал на ЭБУ о необходимости изменения длительности впрыскивания топлива. В отличие от предыдущих блоков, данный модуль не приносит никакого вреда ни двигателю, ни ТНВД, так что ресурс систем и механизмов не уменьшится. Недостатком данного способа повышения мощности является его высокая стоимость, ограниченность в применении и сложность конструкции. Он не дает моментального эффекта – его действие можно почувствовать только через некоторое время.
Есть и другие способы, в том числе и использование оборудования, которое меняет истинное значение стехиометрических величин, но их применение может привести к серьезным проблемам с двигателем.
Одной из серьезных проблем, возникающих у дизельных двигателей — это так называемый «разнос двигателя». Это нештатный режим работы дизельного двигателя, при котором происходит неуправляемое повышение частоты вращения вала двигателя. Такой режим обычно наблюдается после запуска или при резком сбросе нагрузки. Основных причин разноса две: неисправность топливного насоса высокого давления и попадание большого количества моторного масла в камеру сгорания.
Дизельный двигатель
Дизельный двигатель (дизель) представляет собой поршневой ДВС, принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.
Конструкция дизеля в целом мало чем отличается от бензинового двигателя, за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).
Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива – на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.
Как работает турбонаддув
Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.
Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.
Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.
Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).
Работа турбины дизельного двигателя также требует контроля давления:
- компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
- когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.
Устранение неисправностей системы питания дизельного двигателя
Если двигатель не запускается, то первым делом стоит проверить наличие топлива. При низких температурах оно может загустеть, поэтому для запуска двигателя в морозы поможет специальный подогрев дизельного топлива.
Следующей причиной может быть наличие избыточного количества воздуха в системе питания. Такие ситуации возникают вследствие негерметичности системы. Для устранения лишнего воздуха необходимо прокачать систему и устранить ее негерметичность.
Трубопроводы, заборник в баке и топливные фильтры могут быть засорены. Вода в них может замерзнуть. Необходимо отогреть их и тщательно прочистить ветошью, смоченной в горячей воде.
Если двигатель не развивает заявленную мощность и сильно дымит — то необходимо проверить воздушный фильтр на предмет засорения, проверить содержание лишнего воздуха в топливной системе, регулировку угла подачи топлива, регулировку и засоренность форсунок, неисправность насосов высокого и низкого давления.
Неисправность устраняется очисткой фильтров, прокачкой и удалением лишнего воздуха, регулировкой муфты опережения впрыска у форсунки, заменой или ремонтом насосов высокого и низкого давления, если прогрев не помогает.
Неравномерная работа двигателя возникает вследствие потери работоспособности форсунками, неисправности ТНВД или регулятора. Неисправные форсунки подлежат немедленной замене, а насос стоит отправить на ремонт.
Постукивания в двигателе возникают из-за слишком ранней подачи топлива или, наоборот, повышенной подачи. Такое возникает из-за выхода из зацепление фиксатора рейки. Для устранения необходимо отрегулировать угол начала подачи топлива или заменить рейку ТНВД.
Теперь по порядку о процессе устранения неисправностей. Отстой из топливных фильтров сливается при условии, что двигатель теплый. Сливные пробки откручиваются, и отстой сливается до тех пор, пока не начинает течь чистое топливо. Затем пробки туго завертываются, а топливная система прокачивается ручным насосом. После этого запускается двигатель. Через 3-4 минуты все воздушные пробки будут устранены. Отстой из топливных баков сливается с помощью специальных кранов аналогично.
Для промывки фильтра грубой и тонкой очистки дизельного топлива сливается топливо, снимаются колпаки и промываются чистым дизельным топливом. Затем происходит замена старых фильтрующих элементов. После сборки необходимо удостовериться в отсутствии подсоса воздуха при работающем двигателе. В противном случае болты крепления стаканов к корпусам подтягиваются вручную.
Воздушный фильтр снимается с автомобиля и извлекается фильтрующий элемент. Корпус и инерционная заслонка промываются в дизельном топливе или горячей воде, а детали продуваются сжатым воздухом, очищается сетка воздухозаборника. Поврежденные детали заменяются.
Проверяется герметичность выпускного тракта. Очистка фильтрующего элемента производится с помощью продувки сухим сжатым воздухом или промывки. Фильрующий элемент подлежит замене, если на нем имеются сквозные повреждения.
Средний срок службы фильтрующего элемента составляет около 30000 км. Его промывка должна осуществляться не более трех раз, а продувка — не более шести раз.
Смазка муфты опережения впрыскивания топлива осуществляется через одно из отверстий до проливания масла из другого отверстия. В нее заправляется 0,3 литра моторного масла.
Чтобы проверить угол опережения впрыска топлива необходимо повернуть коленчатый вал в положение, когда метка на ведущей полумуфте окажется вверху, а фиксатор войдет в отверстие на маховике. Если метки на муфте и насосе совмещены — то угол опережения впрыска корректен.
Чтобы установить угол опережения впрыска, необходимо отвернуть 3 болта ведомой полумуфты и поворотом коленчатого вала и муфты опережения добиваются совмещения меток.
Проверка форсунок на давление впрыскивания производится на специальном стенде. Величина не должна отклоняться от значения 18+0,5 мПа или 17 мПа для форсунки, отработавшей определенный срок. Форсунка должна впрыскивать туманообразное дизельное топливо, а впрыскиваемая струя должна иметь форму конуса. Если эти параметры не соблюдены — то требуется ремонт дизельных форсунок. Проверка и регулировка ТНВД тажке осуществляется специалистами по топливной аппаратуре.
Заключение
Мы рассмотрели основные узлы и агрегаты системы питания дизельного топлива и основные ее неисправности. Своевременное прохождение технического обслуживание поможет выявить и устранить эти неисправности и, как следствие, увеличить срок службы дизельного двигателя вашего автомобиля. Удачи и легких дорог!
Жесткая работа дизеля
Одной из основных особенностей процесса сгорания в дизелях является «жесткость» работы. Так как в начальный период второй фазы горения значительное количество топлива сгорает с большими скоростями, возникает существенное увеличение давления газов на поршень. Под «жесткой» работой двигателя понимают рабочий процесс, при котором давление сгорания в цилиндре увеличивается чрезвычайно быстро. Казалось бы, чем «жестче» работа, тем больше должна развиваться мощность и улучшаться экономичность двигателя, так как при этих условиях должны сокращаться потери, связанные с несовершенством динамики сгорания. Однако это вызывает рост динамических нагрузок на детали кривошипно-шатунного механизма, появление вибрации и уменьшает долговечность двигателя.
«Жесткость» работы двигателя оценивается приращением давления на один градус угла поворота коленчатого вала:
Средняя величина «жесткости» работы дизелей (∆p/∆φ)ср обычно 1—1,5Мпа/°.
Работа карбюраторных двигателей также характеризуется определенной «жесткостью», но она составляет всего 0,2—0,3 МПа/°.
Чем больше топлива, подготовленного к воспламенению, оказывается в цилиндре, тем больше теплоты выделяется во второй фазе горения, и тем больше «жесткость» работы двигателя.
При разработке дизеля стремятся обеспечить эффективную теплоотдачу при умеренной «жесткости» его работы, не превышая допустимых значений.
Примером «жесткой» работы дизеля является его работа во время прогрева, особенно при низких температурах окружающей среды. В этих условиях период задержки самовоспламенения затягивается, что и приводит к высоким значениям показателя ∆p/∆φ.
Процесс расширения
Назначение и протекание процесса расширения
Процесс расширения является единственным процессом рабочего цикла, в течение которого совершается полезная работа. Начинается он с началом снижения давления в цилиндре и заканчивается к моменту прихода поршня в НМТ.
Расширение происходит при изменении площади поверхности теплообмена, а также давления в надпоршневом пространстве и сопровождается потерями незначительного количества рабочего тела через кольцевые уплотнения.
В начальной стадии расширение происходит с подводом теплоты, так как в это время заканчивается догорание и наблюдается рост температуры. Поэтому значение показателя политропы расширения n2 ниже показателя адиабаты расширения k2, в некоторых случаях даже меньше 1. По мере движения поршня к НМТ процесс догорания затихает и начинает преобладать теплоотвод в стенки цилиндра. При этом n2 растет, приближаясь к значению k2.
При некотором положении поршня отвод теплоты и в то же время продолжающийся, но ослабевающий подвод теплоты становятся равными: n2 = k2.
При дальнейшем расширении отвод теплоты от рабочего тела начинает преобладать, и n2 становится больше k2.
Таким образом, расширение следует рассматривать как политропный процесс с переменным показателем политропы расширения n2 (рис. 20).
Рис. 20. Изменение в процессе расширения показателей Т, р, n2 и k2.
Из-за трудности использования переменных значений n2 при тепловых расчетах двигателей пользуются условным средним значением показателя политропы расширения.
В зависимости от типа двигателя и режима его работы средние значения политропы расширения изменяются от 1,18 до 1,32.
Рассматривая влияние различных факторов на процесс расширения, следует иметь в виду, что чем меньше значение n2, тем индикаторная диаграмма будет более пологой, что означает получение большей полезной работы цикла.
На процесс расширения оказывают влияние следующие факторы:
1. Частота вращения коленчатого вала. При увеличении частоты вращения коленчатого вала сокращается время контакта рабочего тела со стенками цилиндра и утечки газа через зазоры между поршнем и цилиндром, что приводит к уменьшению значения n2.
2. Нагрузка. В карбюраторных двигателях с ростом нагрузки значение показателя n2 почти не изменяется, в дизелях этот показатель уменьшается вследствие увеличения фазы догорания.
3. Размеры цилиндров. При неизменном рабочем объеме цилиндра с увеличением отношения S/D значение показателя n2 уменьшается.
4. Конструкция камеры сгорания. С увеличением размеров камеры сгорания повышается отвод теплоты от рабочего тела, поэтому значение показателя n2 увеличивается.
5. Техническое состояние двигателя. При износе цилиндропоршневой группы возрастают утечки рабочего тела, что аналогично отводу теплоты. Поэтому в изношенных двигателях значение показателя будет выше, чем у двигателей, имеющих хорошее техническое состояние.
Дата добавления: 2017-02-13 ; просмотров: 2863 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Рабочий цикл четырехтактного дизеля
Добрый день. Рассмотрим , что происходит что происходит в одном из цилиндров работающего дизеля.
Впуск — первый такт.
Поршень движется вниз и, подобно насосу, воздет разрежение. Под влияние разности давлений чистый воздух заполняет цилиндр. Выпускной клапан закрыт. В конце такта закрывается и впускной клапан.
В конце такта давление в цилиндре составляет 0,09 МПа, а температура — 30-50 градусов.
Сжатие — второй такт.
Поршень продолжает движение и перемещается вверх. Два клапана закрыты , поэтому создается избыточное давление, а температура растет. Температура достигает 600 градусов, а давление достигает 4 МПа.
В конце такта в цилиндра впрыскивается порция дизельного топлива в мелкораспыленном состоянии через форсунку. Мелкие частицы топлива, соприкасаясь с горячим сжатым воздухом и стенками цилиндра , воспламеняются и большая часть их сгорает.
Расширение или рабочий ход — третий такт.
Поршень идет вниз. Во время этого такта топливо все сгорает. Клапана при рабочем ходе закрыты. Температура газов при сгорании достигает 2000 градусов, а давление повышается до 8 МПа.
Под большим давлением расширяющихся газов поршень перемещается вниз и передает воспринимаемое им усилие через шатун на коленчатый вал, заставляя его вращаться.
В конце такта давление снижается до 0,4 МПа, а температура до 700 градусов .
Выпуск — четвертый такт.
Поршень перемещается вверх, а выпускной клапан открывается. Отработавшие газы удаляются из цилиндра сначала под действием давления, а затем уже поршень выталкивает их.
В конце такта капан выпускной закрывается, а впускной открывается .
Рабочий цикл повторяется .
Подписывайтесь на канал и ставьте лайк!
Источник