Устройство и схема подключения датчика лямбда зонда/кислорода, причины поломок

Проверка лямбда-зонда тестером:

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

https://youtube.com/watch?v=CxhGVt5_YUA

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

Как проверить лямбда зондКак проверить лямбда зонд

Как работает лямбда

Происходит непрерывное сравнение воздуха в отработанных газах. Специальный гальванический элемент выступает в роли своеобразной воздушной батарейки. Различие в условиях химических реакций снаружи и внутри лямбды приводит к появлению напряжения на контактных выводах.

Количество кислорода в эталонном воздухе практически неизменно, а его содержание в отработанных газах зависит от полноты сгорания топливной смеси:

  • кислород в избытке — напряжение растет;
  • малое содержание О2 — напряжение падает.

Поскольку датчик кислорода ВАЗ или других марок работает в условиях высокой температуры, его корпус и электроды изготавливаются из особо прочных материалов: цирконий, титан, керамика. Для эффективной реакции с кислородом на электроды наносится платиновое напыление.

Кроме того, измерительный электрод может работать только при определенной температуре. До момента прогрева датчика выхлопными газами температура поддерживается нагревательным элементом.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

Инструкция по установке универсального датчика кислорода

Инструкция по установке универсального датчика кислорода

Установка должна производиться только квалифицированным специалистом в специализированной ремонтной мастерской ! Инструкция приведена только в ознакомительных целях.

Пожалуйста, внимательно прочитайте эту инструкцию перед снятием кислородного датчика с вашего автомобиля

ИНСТРУКЦИЯ ПО УСТАНОВКЕ: (смотрите иллюстрации)

Установка должна производиться только квалифицированным специалистом в специализированной ремонтной мастерской ! Инструкция приведена только в ознакомительных целях.

ШАГ 1. Запомните, как проложена проводка установленного датчика. Таким же образом нужно будет проложить позже проводку универсального датчика. Отсоедините штекер старого датчика от электроники автомобиля (не размыкайте и не перерезайте проводку самого датчика). Демонтируйте старый датчик соответствующим инструментом.

ШАГ 2. Сравните старый датчик с универсальным датчиком. Проводка универсального датчика должна быть как мин. 40мм короче проводки старого датчика. При необходимости

соответственно укоротите проводку универсального датчика.

ШАГ 3. Теперь укоротите проводку универсального датчика таким образом, чтобы каждый отдельный провод был короче предыдущего на 40мм, начиная с любого провода.

ШАГ 4. Теперь укоротите проводку от разъема старого датчика.

ШАГ 5. После этого наденьте на каждый отдельный провод спец. изоляционную трубку, прилагаемую к комплекту универсального датчика.

ШАГ 6. На каждый отдельный провод наденьте водозащитную изоляцию

Обратите внимание на то, что широкий конец водозащитной изоляции показывает на конец провода (место соединение)

ШАГ 7. С помощью подходящего инструмента (изоляционные кусачки) снимите 8мм изоляции с каждого конца провода. Теперь наденьте на провода универсального датчика контактное соединение и с помощью соответствующего инструмента сожмите конструкцию. Следите за тем, чтобы не торчали неизолированные провода, и соединение было безупречно.

ШАГ 8

Еще раз обратите внимание на таблицу соответствия проводки и убедитесь, что провода подобраны правильно. Теперь соедините провода старого датчика с проводкой универсального датчика, надев на провода контактное соединение

И здесь убедитесь в том, чтобы не торчали неизолированные части проводки, и сожмите соединение соответственно. Для упрощения процесса мы рекомендуем начинать с самого короткого провода универсального датчика.

ШАГ 9. Подвиньте водозащитную изоляцию к крепежному соединению с двух концов проводки. После этого наденьте специальную изоляционную трубку на контактное соединение так, чтобы трубка полностью закрывало соединение и водозащитную изоляцию.

ШАГ 10. Используйте фен с горячим воздухом для закрепления изоляционной трубки посередине над контактным соединением. Для того, чтобы обеспечить должную гидроизоляцию проводки, водозащитная изоляция должна находится внутри изоляционной трубки.

ШАГ 11. Снимите защитный колпачок универсального датчика и монтируйте датчик. Используйте усилие: М18 = 35-58 Нм

Проводка датчика должна быть проложена так же, как была проложена старая проводка. Оригинальные крепежи должны быть зафиксированы. Избегайте прикосновения проводки с горячими частями автомобиля (Коллектор, нейтрализатор). Если необходимо, используйте крепежи для прикрепления проводов друг к другу.

Таблица соответствия проводки

Производитель датчика

Нагревательный провод (х2) (только на 3-4 контактных датчиках)

Сигнальный провод

Массовый провод (только на 2,4 контактных датчиках)

Диагностика

Следует отметить, что проверка работоспособности лямбда зонда должна проводиться совместно с техническим обслуживанием автомобиля, с периодичностью — каждые 10 тысяч километров пробега. Однако если автомобиль эксплуатировался в неблагоприятных климатических условиях, что применимо к Москве, или в агрессивном режиме, техническое обслуживание должно проводиться чаще. Это рекомендация завода изготовителя.

Так же производитель не рекомендует выполнять самостоятельную диагностику или ремонт в случае возникновения признаков какой-либо неисправности. Для ее устранения следует обращаться в сервисный центр.

Диагностика путем визуального осмотра

Начало любой диагностики начинается с визуального осмотра. К первичным способам диагностики кислородного датчика можно отнести:

  • визуальный осмотр электропроводки лямбда зонда на предмет целостности и отсутствия механических повреждений или разрыва;
  • осмотр самого лямбда зонда. На его поверхности не должно быть нагара или твердых отложений.

Нагар на корпусе кислородного датчика свидетельствует о неисправном электронагревателе или чрезмерно богатой горючей смеси, поступающей в камеры сгорания.

Твердые отложения на корпусе датчика говорят о плохом качестве топлива и наличии в нем вредных примесей, или о неправильной пропорции горючей смеси.

При отсутствии видимых причин неисправности выполняется более детальная диагностика.

Детальная диагностика

В сервисном центре, с помощью подключения диагностического компьютера, проверяются все электронные системы автомобиля. При неисправности одной из них бортовой компьютер выявляет ошибку и сохраняет ее в своем реестре ошибок. Каждая ошибка имеет свой код, по которому легко выяснить источник неисправности.

В случае отсутствия диагностического компьютера, необходима слесарная диагностика, которая подразумевает частичную разборку и диагностику вольтметром. Она заключается в следующих операциях:

  • запуск двигателя и прогрев до рабочей температуры;
  • остановка двигателя;
  • отключение разъема датчика и подключение к нему вольтметра;
  • повторный запуск ДВС и одноразовое поднятие оборотов на холостом ходу до 2500 тысяч в минуту;
  • отсоединение вакуумного патрубка от регулятора давления топлива;
  • проверка показаний вольтметра. В том случае, если показание равно или меньше 0.8 В, датчик кислорода 2110 неисправен. Он не подлежит ремонту, следовательно, необходима замена;
  • проверка кислородного датчика на выявление обедненной топливной смеси. При этом искусственно перекрывается подача воздуха в двигатель. Если показания вольтметра равны 0.2 В или меньше, датчик исправен. Иные показания свидетельствуют о неисправности датчика.

Так же в сервисном центре с помощью вольтметра возможна проверка сигнала, подаваемого на лямбда зонд с электронного блока управления. Если подаваемое напряжение выше 0.45 В, необходима более детальная диагностика блока управления.

ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА

Существует несколько причин, по которым лямбда датчик может выйти из строя:

  • Внутренние и внешние замыкания лямбда зонда.
  • Нет заземления / напряжения.
  • Перегрев зонда.
  • Нагар / загрязнение.
  • Механическое повреждение датчика
  • Использование этилированного топлива / присадок

Существует ряд типичных неисправностей лямбда-датчиков, которые происходят наиболее. В следующем списке приведены причины неисправностей выявленных в результате диагностики:

Неисправности лямбда датчика Причины
Защитная трубка или корпус зонда забиты остатками масла Несгоревшее масло попало в выхлопную систему, например, из-за неисправных поршневых колец или маслосъёмных колпачков
Нет доступа к эталонному воздуху, воздух не поступает. Зонд установлен неправильно, контрольное отверстие для воздуха заблокировано
Повреждение в результате перегрева Температура превысила 950 °C из-за неправильно выставленного зажигания или проблемы с регулировкой клапанов
Плохое соединение на контактах Окисление проводов датчика
Обрыв проводки Плохо проложенные провода, перетирание кабеля, укусы грызунов
Отсутствие заземления Окисление, коррозия в выхлопной системе
Механические повреждения При установке перетянут датчик. Момент затяжки превышен.
Химическое старение Частые непродолжительные поездки
Свинцовые отложения Использование этилированного топлива

Диагностика неисправностей для датчика кислорода Лямбда: основные принципы

Автомобили, оснащенные системой самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей. Обычно это отображается через индикаторную лампу двигателя – «чек», «check engine». Память неисправностей затем может быть считана с помощью сканера через разъём OBD-2. Однако некоторые системы не могут определить, относится ли эта неисправность к неисправному датчику или это неисправность кабеля. В таком случае дальнейшие испытания должны быть выполнены механиком в автосервисе.

Для более точной диагностики через EOBD, мониторинг при компьютерной диагностике лямбда-датчика был расширен, чтобы считывать следующие пункты диагностики:

  • Разомкнутая цепь;
  • Эксплуатационная готовность;
  • Короткое замыкание на массу блока управления;
  • Короткое замыкание на плюс;
  • Обрыв кабеля и срок службы датчика кислорода лямбда.

Для диагностики сигналов от лямбда-датчика блок управления использует форму частоты сигнала. Для этого блок управления рассчитывает следующие данные:

  • Максимальное и минимальное обнаруженное значение напряжения датчика кислорода;
  • Время между положительным и отрицательным положением,
  • Лямбда-контроллер, регулирующий соотношение в топливо-воздушной смеси – богатая или бедная;
  • Определение порога лямбда-контроля,
  • Напряжение датчика и длительность периода.

О чем говорят максимальные и минимальные напряжения датчика кислорода?

При запуске двигателя все старые максимальные / минимальные значения в электронном блоке управления удаляются. Во время работы минимальные / максимальные значения отображаются в определенном диапазоне нагрузки / скорости

Амплитуда напряжения датчика: максимальное и минимальное значение больше не достигается, обнаружение насыщенности / обеднения топливной смеси больше невозможно.

Время отклика на изменение напряжения

Если напряжение датчика превышает контрольный порог, начинается измерение времени реакции между положительным и отрицательным состоянием. Если напряжение датчика не достигает контрольного порога, измерение времени прекращается. Период времени между началом и концом измерения времени измеряется счетчиком.

Время отклика: если датчик реагирует слишком медленно на изменение состава смеси то не отображает состояние в нужное время.

Определение старого или загрязненного лямбда зонда

Кислородный датчик может быть неисправенесли он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.

Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.

Какие последствия бывают после установки обманок

Нужно понимать, что любая обманка устанавливается на страх и риск автовладельца. Если монтаж был произведен неправильно, то вы можете столкнуться со следующими проблемами:

  • Из-за того, что бортовой компьютер не может регулировать впрыск жидкости, может произойти нарушение работы мотора.
  • Если схема неправильно спаяна, это может привести к повреждению электропроводки.
  • В процессе установки обманки вы можете повредить датчики кислорода, после чего даже не узнаете об их неисправности (так как у вас уже будет установлена обманка).
  • После таких вмешательств (не только при перепрошивке) может произойти сбой в бортовом компьютере.

Любая неточность приведет к плачевным последствиям, поэтому лучше установить более безопасный готовый эмулятор. В отличие от обманки, он не «обманывает» блок управления, а лишь обеспечивает его корректную работу, преобразуя сигнал ДК. Внутри эмулятора также установлен микропроцессор (как и в самодельной электронной обманке), который способен оценивать выхлопные газы и анализировать ситуацию.

Устранение неисправности

Ремонт проводки

В случае механического повреждения или нарушении целостности проводки выполняется ремонт поврежденного участка или замена электропроводки кислородного датчика.

При нарушении подключения проводов к датчику или его окислении следует выполнить чистку и повторную проверку работы. Однако, если разъем электропроводки поврежден, так же необходима замена проводов.

Чистка датчика

Неисправность лямбда зонда иногда связана с накопившимся слоем сажи на защитном кожухе и внутреннем электроде. Для того, чтобы очистить датчик кислорода на ВАЗ 2110 эффективным способом, необходимо вымочить его в ортофосфорной кислоте (либо в преобразователе ржавчины).

Датчик кислорода ВАЗ заранее отключается и демонтируется. Защитный кожух наружного электрода снимается или отпиливается. Затем устройство погружается в очистительное средство на 20 минут. При этом накопившийся слой должен самостоятельно отстать от поверхности датчика. Допускается чистка щеткой, сделанной из мягкого материала.

После этого необходимо заново установить защитный кожух с помощью точечной сварки или пайки.

После очистки датчик кислорода 2110 необходимо омыть, дать просохнуть, установить в выпускной коллектор и повторить проверку.

Замена

Если в ходе диагностики была выявлен неисправный датчик кислорода ВАЗ 2110 и требуется его замена, необходимо:

  • заглушить автомобиль и выключить зажигание;
  • остудить двигатель до приемлемой температуры, которая позволит контактировать с его выпускным коллектором;
  • отсоединить проводку лямбда зонда;
  • демонтировать кислородный датчик с помощью соответствующего гаечного ключа;
  • установить исправный датчик кислорода ВАЗ, имеющий соответствующую маркировку для конкретной модели двигателя;
  • подключение контактных проводов;
  • запуск двигателя и повторная проверка его работы.

Неисправность кислородного датчика

Специфическим отказом датчика является его «отравление», в результате чего датчик не реагирует или реагирует медленно на изменение концентрации кислорода. Причиной «отравления» могут быть применение этилированного бензина или силиконовых герметиков при ремонте двигателя. В первом случае датчик покрывается порошкообразным налётом зелёного цвета, а во втором – белого. Отказ ДК контроллер парирует переходом из замкнутого на разомкнутый контур управления, при котором сигнал датчик кислорода не используется. Следует иметь ввиду, что контроллер может оценить исправный датчик кислорода как неисправный, если уровень сигнала длительное время (более 5 сек.) не изменяется по причинам, не связанным непосредственно с датчиком. Например: малая величина сигнала может быть обусловлена пониженным давлением топлива, засорением топливных форсунок, подсосом воздуха в выпускной коллектор и т.д. Большая величина сигнала может быть вызвана негерметичностью форсунок, повышенным давлением топлива из-за неисправности регулятора давления и так далее.

Неисправность датчика может проявляться следующим образом: неустойчивая работа или остановка двигателя на холостом ходу; рывки и/или недостаток мощности и приёмистости двигателя; детонация; повышенная токсичность газов; повышенный расход топлива. Автомобиль следует стараться вести плавно, избегая интенсивных разгонов. Если возникнет необходимость снять датчик кислорода, то не следует делать это на холодном двигателе. Можно сорвать грани датчика. Предварительно прогрейте двигатель, чтобы за счет теплового расширения металла ослабло резьбовое соединение датчика с приёмной трубой. А вообще, это наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет примерно 50000 км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец портит платиновые электроды датчика кислорода за несколько бесконтрольных заправок.

Как работает

Принцип действия лямбда зонда заключается в сравнении показателей двух электродов, один из которых расположен в чистом воздухе, а второй — в выпускном коллекторе.

Лямбда зонд ВАЗ 2110 выполнен из термостойких материалов, так как система выпускных клапанов и выхлопная система во время продолжительной работы двигателя имеют крайне высокую температуру.

Основными конструктивными элементами лямбда зонда являются:

  • стальной корпус;
  • наружный платиновый электрод;
  • внутренний циркониевый электрод;
  • керамический изолятор между внутренним и наружным электродами;
  • электронагреватель;
  • защитный кожух для наружного электрода.

Также лямбда зонды, с некоторыми техническими различиями, имеют 4-контактный разъем:

  • 1 контакт — передача сигнала на электронный блок управления;
  • 2 — электрическое питание;
  • 3 и 4 — электрическое питание электронагревателя.

Главной задачей лямбда зонда является определение количества несгоревшего кислорода в выхлопной трубе.

Электронный блок управления подает на электроды лямбда зонда напряжение, равное 0.45 В.

Наружный электрод определяет количество окружающего кислорода, внутренний — количество кислорода в отработанных газах. Получив данные, датчик передает соответствующий сигнал электронному блоку управления ДВС. Передаваемый сигнал — это разность двух показателей.

Блок управления, обработав полученный сигнал, вносит коррективы в работу всех составляющих топливной системы, а так же делает зажигание горючей смеси раньше или позже. Это способствует более стабильной и ровной работе двигателя.

На автомобилях ВАЗ-2110 с 8-клапанным и 16-клапанным двигателем, на которых установлен инжектор, датчик располагается на выпускном коллекторе автомобиля перед резонатором.

Особенностью кислородных датчиков на автомобилях ВАЗ является их рабочая температура. Функционировать они начинают, когда температура достигает 300–400 °C.

В первые минуты после запуска двигателя, контроль его работы осуществляется исходя из показаний других датчиков: массового расхода воздуха и температуры ДВС, а так же датчика открытия дроссельной заслонки.

Когда электронагреватель разогревает устройство до необходимой температуры, блок управления начинает учитывать его показания.

На ранее выпускаемые автомобили ВАЗ-2110 завод изготовитель устанавливал более простые лямбда зонды, в конструкцию которых не входил электронагреватель. Следовательно, его показания блок управления считывал лишь после достаточного прогрева двигателя. При этом, до прогрева и последующего контроля работы ДВС, выхлопные газы содержали значительное количество вредных элементов.

После утверждения новых законодательных актов, касающихся чистоты окружающей среды и уменьшения степени загрязнения воздуха, производители автомобилей стали устанавливать лямбда зонды, которые способны самостоятельно прогреться до необходимой температуры и через короткий промежуток времени обеспечивать менее токсичные выбросы в атмосферу.

Также, на определенный тип двигателей ВАЗ-2110 завод изготовитель устанавливал систему из двух лямбда зондов, которая так же расположена на выхлопной системе.

Первый находится перед катализатором. Он определяет качество выхлопных газов до попадания в катализатор.

Второй — после катализатора, тем самым проверяя качество его работы, которая заключается в очищении выхлопных газов до уровня, требуемого законодательными актами.

Симптомы неисправности

Где он установлен

По поведению автомобиля можно достаточно легко определить, что лямбда зонд пришел в негодность:

  • Автомобиль дергается во время движения;
  • Обороты плавают;
  • Катализатор работает неправильно;
  • Расход топлива заметно растет;
  • В выхлопных газах наблюдается большое количество токсинов.
Обманка Лямбда Зонда - своими руками .Обманка Лямбда Зонда — своими руками .

За работой этого датчика требуется постоянный контроль. Согласно руководству по эксплуатации, проверка выполняется каждые 10 тысяч пройденных километров. Но если условия эксплуатации машины трудные, приходится регулярно ездить в сложных условиях, двигатель перегружается, тогда проверку лучше проводить чаще.

ОБЩАЯ ИНФОРМАЦИЯ И ПРИНЦИП ДЕЙСТВИЯ

Как можно понять из названия детали, датчик кислорода (ДК) – это прибор, посредством которого ЭБУ получает информацию о количестве оставшегося кислорода в выхлопных газах.

ДК является достаточно сложным в конструкционном плане устройством. Состоит он из керамического электролита, который способен переносить крайне высокие температуры, вплоть до четырехсот градусов. Электролит сделан из диоксида циркония, поверхность которого обработана оксидом иттрия. Поверхность оксида покрыта напылением из платины. Использование платины обусловлено тем, что она является материалом, обладающим максимальной теплопроводностью.

Помимо основного электролита, конструкция лямбда зонта состоит из следующих частей:

  • Защитные экранированные наконечники с обеих сторон электролита, на которых расположены отверстия для забора воздуха и выхлопного газа. Наконечники, в паре с электролитом, являются основной функциональной частью датчика кислорода, по которым анализирующее устройство определяет разность потенциалов;
  • Наконечники являются своеобразным корпусом, внутри которого расположен элемент с высокой проводимостью тока (коллектор);
  • Между наконечниками расположено устройство, считывающее возникающий электрический сигнал;
  • Всё элементы конструкции датчика кислорода размещены внутри металлического корпуса. К лямбда зонду подведена проводка из четырех проводов: 2 белых провода, которые отвечают за питание устройства, и два черных – первый, передает полученные данные к ЭБУ, второй – заземление.

Принцип действия лямбда зонта следующий: электролит, расположенный в потоке выхлопных газов автомобиля, разогревается до температуры от 300 до 400 градусов благодаря встроенному нагревательному элементу. Такая температура необходима для того, чтобы цирконий достиг своей максимальной проводимости, и система начала работать. ДК установлен таким образом, что наконечник на одной его части контактирует исключительно с выхлопными газами, а второй наконечник – с чистым атмосферным воздухом.

Статья в тему: Как подключить бортовой компьютер Штат на ВАЗ 2110 (инструкция)

Когда внутри коллектора, расположенного внутри наконечника, скапливается достаточное количество кислорода, на электролите происходит смена разницы потенциалов, данные о которой передаются на блок ЭБУ, и электронные системы четырнадцатой изменяют количество подаваемого в цилиндры топлива.

Оптимальное соотношение топлива и кислорода в сгораемой смеси – 14,7 к 1, именно при такой пропорции наблюдается наибольшее КПД силового агрегата.

Назначение и принцип работы

Лямбда зонд – это устройство, предназначенное для контроля состава выхлопных газов. С помощью него определяется объем кислорода, оставшийся после сгорания топлива, а полученные данные по сигнальным проводам передаются на ЭБУ автомобиля. Для чего это нужно?

Дело в том, что работа систем выпуска отработанных газов и топливной тесно взаимосвязаны.

Связующим звеном в этой цепи является электронный блок управления, который не только получает данные от датчика кислорода в виде электрических импульсов, но и передает на его сигнальный вывод опорное напряжение 0.45 вольт (это важно). ЭБУ, получая данные от датчика кислорода, корректирует, в зависимости от режимов работы двигателя (на холодную, в прогретом состоянии, под нагрузкой и без нее, и т.д.), качество топливовоздушной смеси поступающей в цилиндры двигателя, которая может быть обогащённой, бедной, обедненной и т.д

Корректировка происходит за счет изменения времени открытия топливных форсунок

ЭБУ, получая данные от датчика кислорода, корректирует, в зависимости от режимов работы двигателя (на холодную, в прогретом состоянии, под нагрузкой и без нее, и т.д.), качество топливовоздушной смеси поступающей в цилиндры двигателя, которая может быть обогащённой, бедной, обедненной и т.д. Корректировка происходит за счет изменения времени открытия топливных форсунок.

Правильное соотношение топлива и воздуха для определенных условий работы двигателя, при которых горючая смесь сгорает полностью, называется стехиометрической топливовоздушной смесью.

Также существует такое понятие как коэффициент избытка воздуха или уровень лямбда.

В идеальных условиях, когда все пропорции топлива и воздуха соблюдены правильно (14,7 частей воздуха и 1 часть топлива) этот коэффициент равен 1.

Если смесь обедненная (15:1 и выше), то уровень лямбда будет больше 1, если обогащенная (ниже 14:1), меньше.

Представим, что лямбда зонд неисправен и передает ошибочные данные на ЭБУ. В результате для разных режимов работы двигателя будет формироваться неправильная топливовоздушная смесь, а это минимум большой расход топлива и потеря мощности.

Дальше идет экологическая составляющая, без которой на современных автомобилях никуда, речь идет про каталитический нейтрализатор.

При сгорании топлива образуется ряд токсических компонентов, увеличенное количество которых в выхлопных газах негативно влияет на эффективность работы катализатора.

К основным токсическим веществам можно отнести:

  1. Несгоревшие углеводороды — CH;
  2. Угарный газ и окись кислорода — CO;
  3. Окись азота – Noх.

Ошибки в работе лямбда зонда, и как следствие, неправильное сгорание топлива, приводит к увеличению содержания вредных веществ в выхлопных газах, а с таким количеством катализатор уже не в состоянии справиться.

Существует такое понятие, как «медленный датчик», это когда время его срабатывания превышает 120 мСек и по этой причине ЭБУ не успевает подготовить правильную топливную смесь, отсюда и повышенная токсичность отработанных газов. Но об этом ниже.

Получается, что лямбда зонд является важным устройством, от работы которого зависит насколько правильно будет формироваться стехиометрический состав топливовоздушной смеси при тех или иных режимах работы силового агрегата.

Когда он исправен погрешность в формировании стехиометрического состава равна ±1% и это очень важно, а когда нет, эта цифра увеличивается

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий