Содержание
- 1 Содержание
- 2 5.2 Расчет быстроходного вала редуктора
- 3 Конструкция редуктора на примере механического устройства
- 4 Выбор материала
- 5 5.1 Расчет тихоходного вала редуктора
- 6 Устройство и принцип работы
- 7 Механические
- 8 Достоинства и недостатки
- 9 Расчет конического редуктора
- 10 Конструктивные особенности
- 11 Рекомендации по выбору
- 12 Классификация по основным признакам
- 13 Цилиндрические двухступенчатые редукторы.
- 14 Проектный расчет валов редуктора
- 15 Процесс проектирования одноступенчатого цилиндрического редукторов
- 16 Расчетная схема валов редуктора
Содержание
_Toc231388737
Техническое задание на курсовое проектирование. 3
1. Кинематический расчет и выбор электродвигателя. 4
2. Выбор материалов и определение допускаемых напряжений. 9
3. Расчет тихоходной ступени привода. 11
3.1 Проектный расчет. 11
3.2 Проверочный расчет по контактным напряжениям.. 14
3.3 Проверочный расчет зубьев на изгиб. 15
4. Расчет быстроходной ступени привода. 17
5. Проектный расчет валов редуктора. 20
5.1 Расчет тихоходного вала редуктора. 21
5.2 Расчет быстроходного вала редуктора. 25
5.3 Расчет промежуточного вала. 30
6. Подбор и проверочный расчет шпонок. 36
6.1 Шпонки быстроходного вала. 36
6.2 Шпонки промежуточного вала. 37
6.3 Шпонки тихоходного вала. 37
7. Проверочный расчет валов на статическую прочность. 39
8. Выбор и проверочный расчет подшипников. 43
9. Выбор масла, смазочных устройств. 46
Список использованной литературы.. 48
5.2 Расчет быстроходного вала редуктора
Схема усилий, действующих на быстроходный вал представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение :
где =(20…25) Мпа
Принимаем =20Мпа.
; мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа5 (ГОСТ6636-69): мм.
Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
мм;
мм — диаметр под уплотнение;
мм — диаметр под подшипник;
мм — диаметр для заплечиков;
мм — диаметр вала-шестерни;
b1=22мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №101, у которого Dп=28мм; Вп=8мм .
Выбираем конструктивно остальные размеры:
W=14мм; lм=16мм; l1=25мм; l=60мм.
Определим размеры для расчетов:
l/2=30мм;
с=W/2+ l1+ lм/2=40мм –
расстояние от оси полумуфты до оси подшипника.
Проводим расчет быстроходного вала на изгиб с кручением.
Рис.5 Приближенная конструкция быстроходного вала
Заменяем вал балкой на опорах в местах подшипников (см. Рис.6
). Назначаем характерные точки 1,2, 3 и 4.
Определяем реакции в подшипниках в вертикальной плоскости.
ΣМ2y=0; RАy·0,06-Fr1·0,03=0
RАy= 60,7·0,06/ 0,03;
RАy= RВy=121Н.
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RАy·0,03;
М3у =3,6Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (Рис.6
).
Определяем реакции в подшипниках в горизонтальной плоскости.
ΣМ4x=0; Fm1·0,1 — RАx·0,06+ Ft1·0,03=0;
RАx= (130·0,1+ 166,7·0,03) / 0,06;
RАx=300Н;
Рис.6 Эпюры изгибающих моментов быстроходного вала
ΣМ2x=0; Fm1·0,02 — Ft1·0,03+ RВx·0,06=0;
RВx= (166,7·0,03 — 130·0,02) / 0,06;
RВx=40Н
Определяем изгибающие моменты:
М1х=0;
М2= — Fm2·0,04
М2х=-130·0,04;
М2х=-5,2Нм;
М3хсправа=-Fm1·0,1+RВх ·0,03;
М3хсправа==-130·0,1+40 ·0,03;
М3хсправа=-11,7Нм;
М3х= — RАх ·0,03;
М3х= — 300 ·0,03;
М3х= — 9;
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
Т1-1= Т2-2= Т3-3= T3=3,4Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2
]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) :
; ; Нм2.
Эквивалентный момент:
; ; Нм2.
Конструкция редуктора на примере механического устройства
Как правило, эти машины состоят из стандартных литых корпусов. В редких случаях, когда требуется, чтобы конструкция механизма стала легче, вместо чугуна используют стальные сплавы. В корпусах находятся все необходимые элементы передачи. К компонентам механических видов редукторов можно отнести зубчатые колеса, подшипники, входной и выходной вал.
Кроме того, конструкция редукторов напрямую зависит от их назначения. Если механизм изготавливается специально для конкретной машины, то он может иметь дополнительные элементы, помимо вышеупомянутых. Нередко в корпуса встраивают специальные смазочные (масляные насосы) или охладительные устройства.
Выбор материала
Основные механические характеристики выбранных материалов зубчатых колес приведены в таблице 1.
Деталь |
Материал |
Р-р заготовок, мм |
Термообработка |
Н, вер. |
|||||
1я ступень, прямозубая Шестерня |
Сталь45 |
Dпред= Sпред= |
У |
305,5 |
890 |
650 |
380 |
25 |
385,8 |
Колесо |
У |
285,5 |
890 |
650 |
380 |
20 |
122,8 |
||
2я ступень, косозубая Шестерня |
Сталь45 |
Dпред= Sпред= |
У |
248,5 |
780 |
540 |
335 |
16,5 |
122,5 |
Колесо |
Любые размеры |
Н |
193 |
600 |
320 |
260 |
10 |
38,9 |
|
Деталь |
[] F0 |
[] F |
[] Н0 |
[] Н |
|||||
1я ступень, прямозубая Шестерня |
1 |
4 |
1 |
310 |
310 |
616,9 |
617 |
||
Колесо |
1 |
4 |
1 |
294 |
294 |
580,9 |
580,9 |
||
2я ступень, косозубая Шестерня |
1 |
4 |
1 |
310 |
310 |
520 |
520 |
||
Колесо |
1 |
4 |
1 |
199 |
199 |
414 |
414 |
[] ср
=0,45 ([] Н1
+ [] H2
) = 420
Таблица данных.
Наименование, единица измерения |
Обозначение |
Значение |
Требуемая мощность электродвигателя, кВт |
Р |
2,2 |
20,5 |
||
Передаточное число закрытых передач |
3,15 |
|
Передаточное число открытой передачи |
2,1 |
|
Крутящий момент на тихоходном валу, Нм |
263,4 |
|
Крутящий момент на промежуточном валу, Нм |
88 |
|
Крутящий момент на быстроходном валу, Нм |
29,3 |
|
Угловая скорость тихоходного вала, |
7,16 |
|
Угловая скорость промежуточного вала, |
22,5 |
|
Угловая скорость быстроходного вала, |
71 |
5.1 Расчет тихоходного вала редуктора
Схема усилий действующих на валы редуктора представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение :
где =(20…25) МПа
Принимаем =20МПа.
; мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа20 (ГОСТ6636-69): мм.
Намечаем приближенную конструкцию ведомого вала редуктора (рис.3), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
Рис.3 Приближенная конструкция тихоходного вала
мм;
мм — диаметр под уплотнение;
мм — диаметр под подшипник;
мм — диаметр под колесо;
мм — диаметр буртика;
b4=25мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №106, у которого Dп=55мм; Вп=13мм .
Выбираем конструктивно остальные размеры: W=20мм; lм=20мм; l1=35мм; l=60мм; с=5мм.
Определим размеры для расчетов:
l/2=30мм;
с=W/2+ l1+ lм/2=55мм –
расстояние от оси полумуфты до оси подшипника.
Проводим расчет тихоходного вала на изгиб с кручением.
Заменяем вал балкой на опорах в местах подшипников (см. рис.4
). Назначаем характерные точки 1,2, 3 и 4.
Определяем реакции в подшипниках в вертикальной плоскости.
ΣМ2y=0; RFy·0,06-Fr2·0,03=0
RFy= 368·0,06/ 0,03;
RЕy= RFy=736Н.
Рис.4 Эпюры изгибающих моментов тихоходного вала
Определяем изгибающие моменты в характерных точках: М1у=0;
М2у=0; М3у=RЕy·0,03; М3у=22Нм2; М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.3)
Определяем реакции в подшипниках в горизонтальной плоскости.
ΣМ4x=0; Fm2·0,115 — RЕx·0,06+ Ft2·0,03=0;
RЕx=(814·0,115+ 1012·0,03) / 0,06;
RЕx=2066Н;
ΣМ2x=0; Fm2·0,055 — Ft2·0,03+ RFx·0,6=0;
RFx= (1012·0,03 — 814·0,055) / 0,06;
RFx=-240Н,
результат получился отрицательным, следовательно нужно изменить направление реакции.
Определяем изгибающие моменты:
М1х=0;
М2= — Fr2·0,03
М2х=-368·0,03;
М2х=-11Нм;
М3хслева=-Fm2·0,085-RЕх ·0,055;
М3хслева==-814·0,085-240 ·0,03;
М3хслева=-76Нм;
М3х= — REх ·0,055;
М3х= — 2066 ·0,03;
М3х= — 62;
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
Т1-1= Т2-2= Т3-3= T3=42,5Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2
]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) :
; ; Нм2.
Эквивалентный момент:
; ; Нм2.
Устройство и принцип работы
Конструкция мотор-редуктора представляет собой соединенные в единый блок механический редуктор и электрический двигатель. Благодаря этому, в технологической установке требуется закладывать одно место установки, вместо двух. Также не придется обеспечивать сносность валов двигателя и редуктора, подбирать и монтировать муфту, передающую вращение. Общая конструкция мотор-редуктора имеет некоторые отличия от раздельных вариантов. Корпус передачи изготавливается с необходимым запасом прочности, обеспечивающим надежное функционирование устройства с закрепленным тяжелым мотором. Для монтажа двигателя на корпусе выполняются специальные посадочные места. В конструкции ведущей шестерни редуктора предусматриваются цилиндрические отверстия, используемые для установки вала приводного мотора. На корпусе дополнительно предусматривают элементы крепления для монтажа мотор-редуктора в технологическую установку. В качестве электропривода мотор-редуктора допускается применять любые типы электродвигателей. Наиболее часто встречаются модели, использующие стандартные асинхронные электродвигатели. Для реализации моноблочного исполнения выбирают модели фланцевого типа.
Принцип действия мотор редуктора не отличается от работы классического редукторного электропривода. Момент вращения двигателя передается на ведущую шестерню, фактически установленную на валу мотора. Благодаря зубчатому зацеплению, вращающий момент преобразуется одним или несколькими ведомыми элементами, которые в свою очередь оказывают воздействие на вал технологического механизма.
Выходная скорость вращения зависит от параметров двигателя и передаточного отношения редуктора. Для получения повышенного коэффициента преобразования используются многоступенчатые модели. При необходимости коррекции скорости, мотор-редукторы легко интегрируются в системы с регулировкой оборотов посредством управляемых преобразователей.
Механические
Практически в любой технике встречаются подобные виды редукторов. Их назначение состоит в том, чтобы понижать угловую скорость для увеличения крутящего момента ведомого вала по отношению к ведущему. Такие агрегаты используют в производстве станков, автомобилей, спецтехники и т. д.
Существуют следующие основные виды этих машин:
- Червячные.
- Конические.
- Цилиндрические.
- Волновые.
- Планетарные.
- Глобоидные.
- Комбинированные редукторы, которые сочетают в себе различные виды передач. Например, червячно-конические или планетарно-цилиндрические.
Некоторые вышеупомянутые виды редукторов, их назначение и устройство более подробно рассмотрены ниже.
Достоинства и недостатки
Червячная передача в силу своих конструктивных особенностей имеет как достоинства, так и недостатки.
Из достоинств стоит отметить плавность хода, эффект самоторможения, низкий уровень шума, большое передаточное отношение с использованием всего двух деталей.
Из недостатков следует обратить внимание на сравнительно низкий КПД, повышенный износ, заедание, большое тепловыделение вследствие сил трения. Низкий КПД обуславливает применение подобных механизмов при передаче относительно небольших мощностей до 100 кВт
Для предотвращения скорого износа и заедания необходимо соблюдать требования к точности сборки и регулировать механизмы. Высокое тепловыделение требует специальных установок для отвода лишнего тепла.
Различие редукторов в основном сводится к различиям червяков и зубчатых колес, из которых собран данный червячный редуктор.
Червяки разделяются на типы по следующим признакам:
- по количеству заходов резьбы: однозаходные, многозаходные
- по направлению нарезки резьбы: правые, левые
- по форме винта, на котором нарезана резьба: цилиндрические, глобоидные
- по форме профиля резьбы: с конволютным профилем, с архимедовым профилем, с эвольвентным профилем
- Зубчатые колёса разделяются на типы по следующим признакам:
- по типу колеса: собственно колесо, зубчатый сектор, вырожденный сектор
- по профилю зубьев: прямой, вогнутый, роликовый (вместо зубьев используется вращающийся ролик)
Червячные редукторы со встроенным двигателем называются червячными мотор-редукторами. В редукторах чаще всего двигательный вал располагается под прямым углом к движимому. Компоновка червячного редуктора выбирается исходя из конкретных требований к устройствам. Двигатель может располагаться как сверху приводимого в движение колеса, так и снизу и сбоку. При боковом расположении двигатель устанавливается вертикально. Вследствие вертикального расположения усложняется процесс смазки подшипников вала, а также чистки внешних элементов.
Для увеличения передаточного числа используются разные технологии, но наиболее эффективной является применение большего числа ступеней.
Для смягчения сил трения и повышения сопротивления заеданию применяются специальные вязкие смазочные составы или масла. При низких скоростях вращения смазка осуществляется при помощи специальных ванночек с маслом либо использованием специальных устройств, разбрызгивающих смазку в места повышенного трения. Для червячных редукторов, скорость вращения которых высока применение ванночек нецелесообразно, и применяется принудительная смазка охлаждёнными смазочными материалами.
Основные преимущества редуктора червячного перед зубчатыми передачами заключаются в том, что начальный контакт звеньев происходит не в точке, а по линии. Также входной и выходной валы могут скрещиваться под разными углами, но чаще всего этот угол составляет 90 градусов. Также червячная передача занимает гораздо меньше места, чем зубчатая при одинаковом большом передаточном отношении.
Помимо червячного редуктора червячная передача также применяется в системах регулирования и управления различными устройствами. Благодаря самоторможению обеспечивается точная фиксация положения, а большое передаточное отношение (до 1000) позволяет наиболее точно отрегулировать положение, либо использовать маломощные двигатели. Также червячные передачи и червячные редукторы отлично подходят для установки в качестве механизма передачи в подъёмные и лебёдочные механизмы благодаря своим конструктивным особенностям.
Некоторые технические характеристики промышленно производимых и широко распространённых червячных редукторов.
Самыми распространёнными являются одноступенчатые мотор-редукторы.
Тип | Передаточное число | Частота вращения выходного вала об/мин | Номинальный крутящий момент на выходном валу Нм | |
редуктор | мотор-редуктор | |||
Ч-20 | МЧ-20 | 5 — 50 | 28 — 300 | 4 |
Ч-25 | МЧ-25 | 6 | ||
Ч-31,5 | МЧ-31,5 | 8 | ||
2Ч-40 | МЧ-40 | 5 — 80 | 9,37 — 300 | 28 — 37 |
Ч-50 | МЧ-50 | 50 — 70 | ||
1Ч-63, 2Ч-63 | МЧ-63 | 5 — 80 | 7,5 — 300 | 95 — 135 |
1Ч-80, 2Ч-80, Ч-80 | МЧ-80 | 150 — 280 | ||
Ч-100 | МЧ-100 | 315 — 570 | ||
Ч-125 | МЧ-125 | 615 — 1000 | ||
Ч-160 | МЧ-160 | 1100 — 1900 | ||
Ч-200 | МЧ-200 | 1600 — 3100 | ||
Ч-250 | МЧ-250 | 2700 — 5700 | ||
Ч-320 | МЧ-320 | 4400 — 10000 | ||
Ч-400 | МЧ-400 | 6500 — 19000 | ||
Ч-500 | МЧ-500 | 8200 — 33000 | ||
РЧН-180 | МРЧН-180 | 12,5 — 50 | 20 — 90 | 1300 — 1800 |
РЧП-300 | МРЧП-300 | 16, 25, 50 | 20 — 40 | 4200 |
Расчет конического редуктора
При проектировании конического редуктора необходимо определить его тип, размеры и технические характеристики исходя из требований и возможностей его эксплуатации на предприятии, а также экономичность его изготовления.
Далее будет описана последовательность расчета конического редуктора, для которого необходимо предварительно определить:
- крутящий момент;
- частоту вращения валов;
- планируемый срок работы.
Чтобы выполнить расчет потребуется специализированная литература, содержащая таблицы коэффициентов и значений, а также знание определенных формул.
Последовательность действий при расчете конического редуктора:
- Определить передаточное число.
U = nвх/nвых ; где
nвх – частота вращения входного вала;
nвых – частота вращения выходного вала.
- Вычислить количество зубьев.Для шестерни входного вала:
Z1=22-9lgU
Для шестерни выходного вала:
Z2=Z1U
Полученные значения округляют в большую сторону до стандартного.
- Вычислить фактического передаточное значение.
Uф=Z1/Z2
- Определить КПД.Стандартное значение 0,96
- Произвести расчет мощности.Мощность на выходном валу:
p = Tnвых/9550
Мощность электродвигателя:
рэл = р/КПД
Т – крутящий момент.По таблицам следует выбрать электродвигатель с приближенной большей мощностью.
- Определить твердость шестерней и материал.
НВ =7000×√(Т/dэл)
где dэл— диаметр вала электродвигателя.
Полученное число округлить в большую сторону кратно 10. Выбрать материал с подходящей твердостью и записать его пределы текучести и прочности.
- Произвести расчет допускаемых напряжений.Наибольшим нагрузкам при работе подвергается шестерня. Поэтому необходимо выяснить количество циклов нагружения на всем сроке эксплуатации механизма. Для этого определяем время его работы в часах:
t = 365LKгод24Kсут
где L – срок работы агрегата;
Kгод– коэффициент загрузки в год;
Kсут– коэффициент загрузки в сутки.
Количество вращений шестерни:
N = 60tnэлектродвигателя
Допустимое значение контактной выносливости:
δH×δH0/SH×KHL
где δH0 — предельное значение контактной выносливости в МПа;
SH – коэффициент запаса контактной прочности (равен 1,1);
KFH — коэффициент долговечности.
Допустимое значение выносливости на изгиб:
δF×δF0/SF×KFL
где δF0 — предельное значение выносливости на изгиб в МПа;
SF – коэффициент запаса прочности на изгиб (равен 1,75);
KFL — коэффициент долговечности.
- Рассчитать предварительный делительный диаметр зубчатого колеса.
dпр = 18163√(1,2T/δ2нU)
- Вычислить предварительный модуль.
mпр = dпр/Z1
Полученный модуль уточнить по ГОСТу.
- Найти внешнее конусное расстояние.
R = (m√(Z21+Z22))/2
- Найти диаметры вершин зубьев и делительных окружностей шестерни.dвнеш1 = mZ1;dвнеш2 = mZ2;dвер1 = dвнеш1+2mcosδ1;dвер2 = dвнеш2+2mcosδ2
- Вычислить ширину колеса.
b = 0,285R
Полученную ширину округлить в большую сторону до стандартного значения.
- Определить высоту зубьев.
h = 2,2m
- Произвести расчет валов редуктора.
D = 3√(T/0,2τ)
где τ — допустимое значение касательного напряжения в МПа.
- Выбрать по размеру диаметров валов тип и размеры подшипников.
- Произвести расчет зубчатого колеса.
- Произвести расчет размеров корпуса.
Добиться необходимой прочности стенок корпуса агрегата и его деталей можно при помощи дополнительных ребер жесткости. Рекомендуется по возможности использовать пластмассы и другие легкие материалы, если это позволяют делать конструктивные возможности механизма. В целях экономии при создании редуктора следует выбирать материалы с более дешевой стоимостью, при условии, что это никак не скажется на его дальнейшей работе.
Конические редукторы нашли широкое применение на производстве. Несмотря на небольшие недостатки, они часто применяются в станках, поворотных механизмах и машинах. Использование таких агрегатов позволяет передать вращение под углом в 90 градусов, а также сделать реверс.
Конструктивные особенности
Существует два типа конических редукторов:
- узкие;
- широкие.
Под узким типом редуктора подразумевается то, что ширина зубчатого колеса будет равна четверти внешнего конусного расстояния. Передаточные числа в диапазоне 3-5, а число зубьев у шестерни 20-23. У редукторов широкого типа ширина колеса варьируется в пределах от 0,3 до 0,4 внешнего конусного расстояния. Значения передаточных чисел будут 1-2,5, а количество зубьев шестерни от 25 до 28.
На рисунке ниже изображен чертеж конического редуктора, на котором видно, что зубчатые колеса соприкасаются под определенным углом. Валы установлены на однорядные роликовые подшипники и находятся в закрытом корпусе с крышкой. В большинстве случаев, материалом для корпуса служат сталь или чугун, но встречаются модели из легких сплавов. В конструкции используются шестерни конического типа, имеющие прямые или косые зубья. Использование радиальных подшипников позволяет выдерживать большие осевые нагрузки.
По типу исполнения, конические редукторы могут содержать одну или несколько ступеней, с увеличением которых будет задействовано большее количество валов и конических пар. Самыми распространенными на сегодняшний день являются редукторы конические одноступенчатые. Благодаря двухступенчатым и трехступенчатым агрегатам получается достичь требуемого вращающего момента и реверсивного движения.
В независимости от количества ступеней, вращение к редуктору от электродвигателя передается при помощи муфты, клиноременной или цепной передачи. На рисунке ниже изображена кинематическая схема одноступенчатого редуктора.
Смазка конической пары осуществляется при помощи масляной ванны. Одна из шестеренок частично погружена в масло и при вращении перемещает часть масла на другую шестерню, с которого масла вновь капает в ванну. Во время работы агрегата часть масла попадает на внутренние стенки корпуса, в которых находятся технологические отверстия. Через них масло попадает к подшипникам и смазывает их.
Рекомендации по выбору
Как выбирать редуктор вместо сломавшегося, на имеющуюся технику и при создании механизмов самостоятельно. Основным является мощность на выходном валу. Она рассчитывается на основании оборотов двигателя по передаточному числу.
Следует обратить на расположение валов, оно в цилиндрических моделях может быть в одну сторону.
Крепление осуществляется с помощью фланца непосредственно к валу двигателя и с помощью отверстий в подошве устанавливается на платформу.
В маркировке указано межцентровое расстояние между валами. Этот размер имеет конструктивное значение при установке узла и соединения его с двигателем и валом рабочего механизма.
Следует посмотреть, какая пара в редукторе первая, ее передаточное число, зацепление. Выбор редуктора включает в себя и расположение валов в пространстве. Они могут располагаться под прямым углом и быть в разных плоскостях. Тип подшипников указывается в технической документации. Там же таблица сроков эксплуатации разных узлов.
При проектировании машины, подбор червячного редуктора выполняется по мощности и расположении зацепления. При нижнем зацеплении пара хорошо смазывается, не требует дополнительного охлаждения и способна работать длительно время
Следует обратить внимание на рабочий режим. Узел не всегда способен работать по несколько часов непрерывно
Червячное соединение быстро перегревается.
Классификация по основным признакам
Современные инженерно-технические стандарты предусматривают классификацию редукторов по следующим признакам:
- конструкция используемой передачи;
- пространственное расположение элементов;
- конструктивное исполнение.
По пространственному расположению ключевых элементов эти устройства подразделяются на редукторы вертикального исполнения и традиционные горизонтальные. Конструктивное исполнение предусматривает два дополнительных вида: чистый механический редуктор, и редуктор с двигательной установкой (мотор-редуктор). Однако общепринятой классификацией редукторов считается таковая по типу используемого передаточного узла (передачи).
Цилиндрические двухступенчатые редукторы.
Цилиндрические двухступенчатые редукторы могут иметь развернутую (рис. 9…16) и соосную схему (рис. 17…21). При развернутой схеме оси всех валов редуктора могут быть расположены в одной плоскости, параллельной основанию корпуса редуктора (рис. 9); в наклонной плоскости (рис. 10), в плоскости параллельной основанию корпуса редуктора (рис. 11), в плоскости, перпендикулярной основанию редуктора (рис. 13 быстроходный вал внизу, рис. 14 — быстроходный вал наверху). Кроме того, при развернутой схеме валы могут быть расположены перпендикулярно к основанию редуктора (рис. 16 — выходные концы валов направлены в одну сторону).
При соосной схеме оси валов могут быть расположены в плоскости, параллельной основанию корпуса редуктора (рис. 17), и в плоскости, перпендикулярной основанию корпуса редуктора (рис. 18 промежуточный вал внизу, рис. 19 — промежуточный вал наверху). На рис. 20 показана соосная двухпоточная схема (оси валов расположены в плоскости, параллельной основанию корпуса редуктора), на рис. 21 — соосная трехпоточная схема (промежуточные валы расположены равномерно по окружности).
Проектный расчет валов редуктора
По кинематической схеме привода составляем схему усилий, действующих на валы редуктора по закону равенства действия и противодействия. Для этого мысленно расцепим шестерни и колеса редуктора, при этом дублирующий вал не учитываем.
Схема усилий приведена на рис.1.
Рис.2 Схема усилий, действующих на валы редуктора.
Из табл.1,2,4 выбираем рассчитанные значения:
Т1=3,4 Нм; Т2=8,5 Нм; Т3=42,5 Нм;
Ft1=166,7 Н; Ft2=1012 Н; Fr1=60,7 Н; Fr2=368 Н;
d1=39мм; d2=102мм; d3=14мм; d4=84мм.
Fm1 и Fm1 — консольные силы от муфт, которые равны :
; ;
Н; Н.
Rx и Ry — реакции опор, которые необходимо рассчитать.
Так как размеры промежуточного вала определяются размерами остальных валов, расчет начнем с тихоходного вала.
Процесс проектирования одноступенчатого цилиндрического редукторов
Перед тем как приступать к изготовлению этого устройства производится проектный расчет:
- подбора материалов;
- выбор максимально допустимого напряжения на качение;
- вычисление чистого полезного кручения вала.
В рамках произведения работ осуществляется подготовка эскизной компоновки редуктора.
Расчет размеров валов этого устройства производится в 2 этапа:
- приблизительный подсчет количества оборотов чистого кручения;
- точный расчет прочностных показателей напряжения изгиба и кручения.
Для производства подобных агрегатов рекомендуется использовать термически обработанную легированную сталь. Расчет валов при составлении проекта осуществляется в зависимости от напряжения кручения, концентрации напряжения, его циклов
Если планируется установка валов быстрого хода, то для расчета берутся во внимание меньшие значения, тихого хода — большие
Для достижения сбалансированности и соосности расположения разнообразных элементов этого устройства разрабатываются кинематические схемы одноступенчатых редукторов. Они представляют собой изображения в разных разрезах корпуса и деталей, из которых состоит редуктор, отражают их взаимное расположение, пропорции, места сопряжения и т.д.
Компоновка одноступенчатого редуктора может быть разной. Он может иметь дополнительные, существенно улучшающие его работу элементы. Например, масляный насос, который осуществляет принудительную смазку в местах, куда не попадает жидкость при вращении маховика звездочки или в редукторе червячного типа.
Создать такое устройство можно и самому, но для этого потребуется приобрести необходимые запасные части. Важным элементом редуктора, который влияет на его характеристики, является корпус и размер звёздочек, диаметр червячного механизма. Для человека, не имеющего в этом деле опыта, потребуется терпение и усердие, но достичь желаемой цели — создать редуктор с необходимыми параметрами все же можно.
Сборка устройства в этом деле является самой легкой работой, а самой ответственной и сложной — это проектирование и подбор необходимых элементов, запасных частей и деталей.
Расчетная схема валов редуктора
Быстроходный вал.
Вертикальная плоскость:
Определяем опорные реакции:
Проверка
Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях:
Горизонтальная плоскость:
Определяем опорные реакции:
Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях:
Строим эпюру крутящих моментов:
Определяем суммарные радиальные реакции
Определяем суммарные изгибающие моменты в наиболее нагруженных сечениях:
Промежуточный вал
Вертикальная плоскость:
Определяем опорные реакции:
Проверка
Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях:
Горизонтальная плоскость.
Определяем опорные реакции:
Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях:
Строим эпюру крутящих моментов:
Определяем суммарные радиальные реакции
Определяем суммарные изгибающие моменты в наиболее нагруженных сечениях:
Тихоходный вал
Вертикальная плоскость:
Определяем опорные реакции:
Проверка
Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях:
Горизонтальная плоскость:
Определяем опорные реакции:
Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях:
Строим эпюру крутящих моментов:
Определяем суммарные радиальные реакции
Определяем суммарные изгибающие моменты в наиболее нагруженных сечениях: