Содержание
- 1 Как проверить светодиод не выпаивая ?
- 2 Проверка — исправность — лампа
- 3 Формулы расчета резистора
- 4 Графический расчет.
- 5 Последовательное соединение – диод
- 6 Как правильно подключать светодиоды
- 7 Подключение светодиодной ленты
- 8 Как определить напряжение светодиода
- 9 Разрушающие методы контроля качества сварных соединений
- 10 Мигающие светодиоды
- 11 LED Calc
Как проверить светодиод не выпаивая ?
Выяснить какой из выводов у светодиода анод, а какой катод до боли просто: После неких испытаний выяснился один недочет. Чтоб проверить светодиод его приходилось выпаивать, что бывает не всегда оправдано. Было решено дополнить мультиметр измененными дополнительными щупами для проверки светодиодов сходу в плате. Для производства этого приспособления нам пригодятся: Из текстолита вырезаем небольшой прямоугольник и припаиваем к нему с 2-ух сторон скрепки, что бы вышла вилка, провода щупов и в эталоне SMD светодиод как индикатор. Можно припаять и обыденный светодиод Никаких дополнительных резисторов не нужно. Скрепки очень прочные, отлично пружинят и в конечном итоге накрепко стоят в колодке транзисторов мультиметра. Толщина текстолита как раз соответствует расстоянию меж отверстий транзисторной колодки мультиметра.
На фото видно, что выводы скрепок стоят не по середине. Это изготовлено специально, сейчас текстолит еще будет делать роль стрелки при подсоединении вилки в разъем транзисторов, чтобы на щупах сохранялась верная полярность. Сейчас мы можем инспектировать любые светодиоды, не выпаивая их из платы и не применяя дополнительных пробников либо источников питания. Было испытано много светодиодов, ни один при проверке не сгорел.
Проверка — исправность — лампа
Проверка исправности лампы 5Ц4С ( демпфер) в телевизорах Т-1 Ленинград и Т-2 Ленинград, Т-1 Москвич и лампы 6Н7С в КВН-49 осуществляется заменой на новую также в случае наличия вертикальной линии или полосы в центре экрана.
Для проверки исправности ламп кратковременно нажимают кнопку SB1 ( точки 22 23), включая ею все лампы.
Для проверки исправности ламп ( когда К1 и К2 разомкнуты) достаточно нажать кнопочный выключатель SB. В нормальном режиме цепи ламп развязаны благодаря тому, что диоды V4 и V5 соединены встречно, а это значит, что при любой полярности один из них заперт.
Для проверки исправности ламп на шинку 1ШС подается напряжение ключом ПО.
Схема предназначена для проверки исправности сигнальнных ламп.
Блоки контрольных ламп ПД511 снабжены кнопками проверки исправности ламп, с помощью которых водитель имеет возможность осуществлять проверку всех контрольных ламп перед каждым выездом автомобиля из парка или при пуске двигателя.
Устранение неисправности по данному признаку нужно начинать с проверки исправности ламп зеленых фонарей, которые соединены последовательно. Для этого нужно отключить напряжение силовой сети на кране и с помощью измерительного прибора на наборных зажимах, к которым присоединены провода данных фонарей, проверить исправность ламп. В случае их повреждения следует определить, какая именно ( на какой стороне крана) лампа неисправна. Если лампы исправны, тогда следует проверить контактное соединение цепи этих фонарей пускателей КАВ1 и КАВ2 в зависимости от того, каким из указанных пускателей включаются зеленые фонари. При проверке контактного соединения цепи фонарей может быть обнаружено подгорание или поломка контактов пускателя.
Контроль исправности УПИ осуществляется по сигналам схем контроля исправности цепей и блоков питания устройства, а также и проверкой исправности ламп световых индикаторов мнемосхемы, группового и индивидуального табло сигнализации и вызова, табло этапов логического управления и табло контроля исправности установки.
Схема предупреждающей сигнализации с мигающим световым сигналом.| Схема работы табло со встроенными реле сигнализации с мигающим световым сигналом.| Схема сигнализации срабатывания указательных реле защиты и автоматики. |
При нажатии кнопки КСМ срабатывает реле 2РП и переводит лампы на ровное свечение. Переключателем ПО производится проверка исправности ламп табло.
Сигнализатор наполнения песколовок. |
Многоточечное регулирующее устройство СУ-101 ( разработка НПО Аналитприбор) предназначено для сигнализации, дистанционного контроля и автоматического регулирования уровня активного ила и осадка в отстойниках очистных сооружений путем периодического опроса датчиков уровня по заданной временной программе. Оно имеет 6 или 12 ( по числу отстойников) датчиков и трансформаторов аналогичных СУФ-42 и один общий измерительный блок, где размещены блок сигнализатора, схема периодического опроса датчиков, схема проверки исправности ламп подсветки датчиков и регулирующая схема.
Многоточечное регулирующее устройство СУ-101 предназначено для сигнализации, дистанционного контроля и автоматического регулирования уровня активного ила в отстойниках очистных сооружений путем периодического опроса датчиков уровня по заданной временнбй программе. Оно имеет 6 или 12 ( по числу отстойников) датчиков и трансформаторов, аналогичных СУФ-210, и один общий измерительный блок, где размещены блок сигнализатора, схема периодического опроса датчиков, схема проверки исправности ламп подсветки датчиков и регулирующая схема. Система регулирования уровня осевшего ила в отстойниках с помощью приборов СУФ-210 и СУ-101 значительно надежнее работает во вторичных отстойниках, чем в первичных.
Принципиальная схема автоматизированной системы противопожарного водоснабжения нефтеперерабатывающего комплекса. |
На мнемощит выведены световые указатели: насосы включены, выключены; насосы — основной, резервный; неисправность насосов, предупредительный сигнал недопустимого снижения уровня в емкостях с раствором пенообразователя, снижение давления в сети растворопровода, положение электропривода каждой из задвижек. На мнемосхеме установлено световое табло, характеризующее состояние насосных агрегатов включен, отключен, положение задвижек — открыто, закрыто, заклинило, а также аварийная сигнализация о нарушении нормальной работы насосов, о пожаре, о падении уровня в емкостях с раствором и проверка исправности ламп и звукового сигнала.
Формулы расчета резистора
Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:
- напряжение цепи;
- рабочий ток светодиода;
- падение напряжения на излучающем диоде (напряжение питания светодиода).
Величина сопротивления определяется из выражения:
R = U/I,
где U — падение напряжения на резисторе, а I — прямой ток через светодиод.
Падение напряжения светодиода определяют из выражения:
U = Uпит — Uсв,
где Uпит — напряжение цепи, а Uсв — паспортное падение напряжения на излучающем диоде.
Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).
Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:
(R — Rст)R•100%
Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.
Не менее важный параметр, сказывающийся на надежности работы — рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:
P = U•U/R
Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.
Пример:
Имеется светодиод с падением напряжения на нем 1.7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.
Падение напряжения на ограничительном резисторе составляет:
U = 12 — 1.7 = 10.3 В
Сопротивление резистора:
R = 10.3/0.02 = 515 Ом.
Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.
Рассеиваемая мощность в ваттах:
P = 10.3•10.3/560 = 0.19 Вт
Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0.25 Вт.
Watch this video on YouTube
Графический расчет.
При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.
Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.
Например, ILED = 10 мА, а U = 5 В. По графику IMAX примерно равна 25 мА.
По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).
Примеры вычислений сопротивления для светодиода.
Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.
Последовательное соединение – диод
При последовательном соединении диодов для обеспечения равномерного распределения обратных напряжений необходимо шунтировать каждый диод резистором.
Германиевые плоскостные вентили Д-302-Д-ЗО5.| Германиевые выпрямительные столбы. |
При последовательном соединении диодов каждый диод рекомендуется шунтировать сопротивлением величиной 10 – 15 ком. При параллельном соединении диоды необходимо подбирать по прямому падению напряжения.
Плоскостные кремниевые вентили. |
При последовательном соединении диодов Д202 – Д205 рекомендуется каждый диод шунтировать сопротивлением 70 ком на каждые 100 в амплитудного значения обратного напряжения, диоды Д206 – Д211 – 100 ком на каждые 100 в амплитудного значения обратного напряжения.
Определение внутреннего сопротивления Kf из статической вольт-амперной характеристики. |
При последовательном соединении диодов их необходимо шунтировать выравнивающими сопротивлениями; величина каждого сопротивления должна быть меньше наименьшей величины обратного сопротивления диода. Диоды с обратным током до 100 мка рекомендуется шунтировать сопротивлениями из расчета 70 ком на каждые 100 в ( амплитудных) фактического обратного напряжения, а диоды с обратным током свыше 100 мка – из расчета 10 – 15 ком на каждые 100 s обратного напряжения.
При последовательном соединении диодов рекомендуется шунтировать диод резистором с сопротивлением 10 – 15 кОм на каждые 100 В амплитуды обратного напряжения.
Поэтому при последовательном соединении диодов каждый из них, как правило, шунтируют активными сопротивлениями Rm 70 – 200 ком. Этим обеспечивается более равномерное распределение напряжения на каждом из диодов.
В высоковольтных цепях часто используют последовательное соединение диодов. При таком соединении напряжение распределяется между всеми диодами. Однако необходимо учитывать, что диоды имеют разные значения величин обратного тока / 0бР, а также могут обладать нестабильностью обратного гока во времени. Очевидно, что при последовательном включении большая часть приложенного напряжения будет падать на диоде с наименьшим обратным током. При этом обратное напряжение может превысить допустимое значение U06P макс и диод окажется в режиме пробоя.
Это выражение удобно для случаев последовательного соединения диода с приемником, так как тогда сила тока во всех частях цепи одинакова. Как видно, в знаменателе стоит полная мощность, приходящая извне и затрачиваемая в цепи диода и приемника, обладающего лишь положительным сопротивлением, а в числителе – полезная мощность, затрачиваемая только в одном приемнике. Легко видеть, что лишь при отрицательном Rm коэффициент усиления будет больше единицы. Коэффициент а может стать равным бесконечности или отрицательным в случае, когда алгебраическая сумма сопротивлений диода и других сопротивлений цепи сделается равной нулю или будет меньше нуля.
По условиям выдерживания обратного напряжения в большинстве случаев требуется последовательное соединение диодов и сборок. Значение обратного напряжения зависит от схемы выпрямителя; в рекомендуемых схемах оно равно удвоенному испытательному напряжению или части его, приходящейся на ступень выпрямления. Обратное напряжение определяется исходя из наибольшего напряжения испытательной установки.
При анализе решения можно отметить, что в практических случаях чаще встречается последовательное соединение диодов, так как в этом случае увеличивается допустимое прямое и обратное напряжение.
Полная схема Греца.| Полусхема Греца. |
Этим достигается линеаризация выпрямительной характеристики и, следовательно, линейность шкалы вследствие последовательного соединения диода с резистором. Кроме того, резистор служит добавочным сопротивлением, что позволяет применять диоды с меньшим обратным напряжением. Вследствие этого схема обеспечивает меньшую чувствительность по сравнению с полной схемой. Полусхема Греца широко используется в комбинированных измерительных приборах.
Как правильно подключать светодиоды
Подключение светодиода возможно только к постоянному электротоку. У каждого источника света этого типа есть инструкция по подключению. Если она затерялась, по производителю можно найти данные в сети интернет и узнать, как правильно подключить конкретные лампочки.
Последовательность сборки:
- определение технических характеристик;
- составление схемы;
- вычисление вольтажа всей цепочки;
- подбор блока питания (драйвера);
- расчет резистора (если питание от напряжения);
- определение полярности диодов;
- пайка схемы;
- подключение блока (драйвера);
- подключение к электросети.
Если схема работает, нужно измерить электроток и потребление энергии. При слишком большом значении тока требуется коррекция.
Чтобы не подключать систему охлаждения, лучше покупать лампочки с мощностью 1-3 В на подложке.
Параллельное подключение
Если подключить LED-лампочки параллельно, напряжение на всех равное, общая сила тока – сумма токов лед-ламп. Их характеристики отличаются даже если они принадлежат к одной партии.
Если подключить к схеме одно сопротивление, на каждый чип будет подаваться ток с различным номиналом, один будет светиться слишком ярко, другой на 60-70% от номинального значения. Это значит, что при параллельном подключении каждому диоду требуется отдельное сопротивление.
Подобные схемы используются редко из-за двух недостатков: большого количества элементов и роста нагрузки при выгорании одной лампочки.
Последовательное подключение
Несколько диодов возможно подключить и последовательно (катод одного припаять к аноду другого). Они должны быть одинаковые, блок питания выбирается с мощностью, соответствующей сумме мощности лампочек.
Ток на все лампочки подается одинаковый, напряжение состоит из суммы падения на каждом диоде. То есть, количество лампочек, которые возможно подключить, ограничено показателями падения напряжения (падение – напряжение, которое использовано для свечения).
У последовательного подключения 2 недостатка:
- если диодов много, у блока питания должен быть большой вольтаж;
- при перегорании одной лампочки перестают светиться все.
От недостатков можно избавиться, если применять смешанное подключение. Диоды делятся на последовательно соединенные группы, которые соединяются параллельно.
При помощи комбинированного подключения производятся светодиодные ленты.
Как включить светодиод в сеть переменного тока
Многих интересует, как подключить светодиод сети 220 В. Подобное возможно, если ток источника света до 20 мА, напряжение не падает более, чем на 2-3 вольта. Если применить формулу расчета драйвера, получается, что сопротивление должно быть 30 кОм.
Резистор будет греться при снижении вольтажа, поэтому важно знать его мощность. Для расчетов используется формула: Р=I2R=U2/R, где:. Для расчетов используется формула: Р=I2R=U2/R, где:
Для расчетов используется формула: Р=I2R=U2/R, где:
U – разность между напряжением сети и падением напряжения на источнике света.
В результате вычислений получается 2 Вт.
В схему включения светодиода обязательно включение дополнительного диода, защищающего от пробоев в ситуациях, когда на выходах светильника возникнет амплитудное напряжение. Недостаток подобной схемы – большие потери энергии из-за выделения тепла.
Более эффективно другое соединение, в которое кроме диода включается конденсатор. Он обеспечивает падение напряжение до требуемого уровня.
Обе схемы упрощенные. Чаще всего они не нужны, так как в большинство светодиодов встроен драйвер, преобразующий 220 В в постоянный вольтаж в пределах 5-24 В.
Без драйвера к электросети возможно подключить светодиодные ленты 220 В, состоящие из 60-и элементов, укомплектованных выпрямителем. То же самое относится к большим СОВ-диодам, в которых 60 лед-кристаллов соединены последовательно. Китайцы начали выпускать модули, укомплектованные стабилизатором (устанавливается на подложку).
Подключение светодиодной ленты
Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.
Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.
Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.
Что такое светодиод, его принцип работы, виды и основные характеристики
Что такое делитель напряжения и как его рассчитать?
Что такое резистор и для чего он нужен?
Параллельное и последовательное соединение проводников
Что измеряется в люменах и какие нормы освещенности на 1 квадратный метр?
Как рассчитать падение напряжения по длине кабеля в электрических сетях
Как определить напряжение светодиода
Самый очевидный метод определения напряжения полупроводникового прибора – это использовать регулируемый источник питания. Если блок питания регулируется с нуля и при этом возможен контроль тока (а еще лучше – его ограничение), то больше ничего не нужно.
Надо подключить LED к источнику, строго соблюдая полярность. Дальше надо плавно поднимать напряжение (до 3..3,5 В). При определенном напряжении светодиод вспыхнет в полную силу. Этот уровень будет примерно соответствовать рабочему току, который можно считать по амперметру. Если у прибора нет встроенного амперметра, то крайне желательно контролировать ток по внешнему прибору.
Проверка светодиода с помощью регулируемого источника питания.
Такой метод применим к приборам оптического диапазона. Свечение УФ- и ИК-светодиодов не видно человеческим зрением, но в последнем случае можно наблюдать за включением LED через камеру смартфона. Таким методом можно отследить появление инфракрасного излучения.
Свечение ИК-светодиода не видно невооруженным глазом, но наблюдается через камеру смартфона.
Если регулируемого источника нет, можно взять обычный блок питания с фиксированным выходом, заведомо превышающим предполагаемое напряжение светодиода. Или даже батарейку на 9 В, но в этом случае можно будет проверить только светодиод небольшой мощности. К светоизлучающему элементу надо последовательно припаять резистор так, чтобы ток в цепи не превысил верхний предел. Если предполагается, что LED маломощный и работает при токе не более 20 мА, то для источника с выходным напряжением 12 В резистор должен быть около 500 Ом. Если используется мощный осветительный прибор (например, типоразмера 5730) с током 150 мА (батарейка такой ток обеспечит не всегда), то резистор должен быть около 10 Ом. Надо подключить цепочку к источнику постоянного напряжения, убедиться в зажигании LED и замерить падение напряжения на нем.
Светодиод с припаянным резистором.
Существуют и альтернативные способы узнать, на сколько вольт рассчитан светодиод.
Мультиметром
Правильная полярность подключения LED к тестеру.
У некоторых мультиметров напряжение, подаваемое на клеммы в режиме тестирования диодов, достаточно велико для зажигания LED. Такой измерительный прибор можно использовать для определения рабочего напряжения светодиода, одновременно проверяя цоколевку полупроводникового элемента. При верном подключении p-n переход начнет светиться, а тестер покажет какое-то сопротивление (зависит от типа LED). Проблема этого метода в том, что для замера фактического значения Uрабочего на выводах светодиода потребуется второй мультиметр. И другой момент: измерительного напряжения мультиметра вряд ли будет достаточно для вывода светодиода в рабочую точку по току. Визуально это заметно по недостаточно яркому свечению, а для замеров это будет означать, что светодиод не вышел на линейную часть ВАХ и фактическое значение рабочего напряжения будет выше.
По внешнему виду
Сигнальные светодиоды различного цвета свечения.
Рабочее напряжение приблизительно можно оценить по внешнему виду и цвету свечения LED (иногда цвет можно определить даже не подавая питание на прибор). Для этого можно воспользоваться таблицей, приведенной выше. Но однозначно определить напряжение по цвету свечения светодиода не получится. Зачастую производители подкрашивают компаунд, чтобы цвет излучения p-n перехода сложился с цветом линзы и получился новый оттенок. К тому же даже в пределах одного цвета существует разброс параметров (см. таблицу) для светодиодов разных типов. Так, для LED белого свечения разница напряжений может достигать более 50%.
Разрушающие методы контроля качества сварных соединений
Разрушающие испытания проводят на образцах-свидетелях, моделях и реже на самих изделиях для получения информации, прямо характеризующей прочность, качество или надежность соединений. К их числу относятся: механические испытания, металлографические исследования, химический анализ и специальные испытания. Эти методы применяют главным образом при разработке технологии изготовления металлических конструкций или для выборочного контроля готовой продукции.
Механические испытания предусматривают статические испытания различных участков сварного соединения на растяжение, изгиб, твердость и динамические испытания на ударный изгиб и усталостную прочность.
Металлографические исследования проводят для установления структуры металла сварного соединения и наличия дефектов.
При макроструктурном методе определяют характер и расположение видимых дефектов в разных зонах сварных соединений путем изучения макрошлифов и изломов металла невооруженным глазом или с помощью лупы.
При микроструктурном анализе исследуют структуру металла на полированных и травленных реактивами шлифах при увеличении в 50…2000 раз. Такие исследования позволяют обнаружить пережог металла, наличие окислов по границам зерен, сульфидных и оксидных включений, размеры зерна, микроскопические трещины и другие дефекты структуры.
Химический анализ позволяет установить состав основного и наплавленного металла, электродов и их соответствие ТУ на изготовление сварного соединения.
Специальные испытания проводят для получения характеристик сварных соединений, учитывающих условия эксплуатации (коррозионная стойкость, ползучесть металла при воздействии повышенных температур и др.).
Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.
При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.
При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.
LED Calc
LED Calc — это удобная программа для расчета резистора для светодиодов. В программе необходимо указать напряжение источника питания, напряжение и ток светодиода, а также указать тип соединения (параллельное / последовательное) и количество светодиодов. После нажатия на кнопку Рассчитать программа выведет точное значение сопротивления резистора, стандартное значение (из ряда E24), а также мощность резистора и общую мощность потребляемую схемой. Ниже представлен интерфейс программы. Следует помнить, что данный способ подключения подходит для маломощных (10-50 мА) светодиодов. В более мощных случаях становится заметным низкий КПД и ухудшаются стабилизационные возможности.
Скачать LED Calc